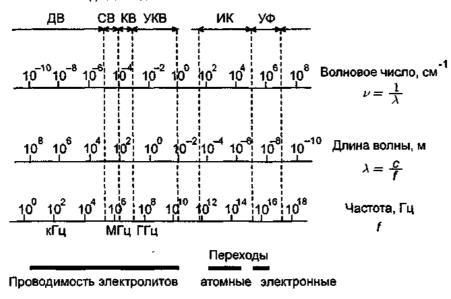
Высокорезистивные материалы

Раджабов Евгений Александрович

Импедансная спектроскопия

Лекция 3


Основные концепции метода Эквивалентные электрические схемы Экспериментальное оснащение метода

Литература Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела: В 2 т. Т. І. — СПб.: Изд-во С.-Петерб. ун-та, 2000. — 616 с.

Процессы

Диапазон частот внешнего переменного электрического поля, накладываемого на образец, варьируется от 10^{-6} до 10^{12} Гц. В таком диапазоне удается изучать диэлектрические объемные свойства образцов и электродные процессы, протекающие на межфазных границах (рис. III.10.1). Разные экспериментальные методики применяются для работы в различных частотных диапазонах: мостовые — от 10^{-2} до 10^{10} Гц; резонансные — от 10^{3} до 10^{8} Гц; резонаторные — от 10^{9} до 10^{11} Гц; волноводные — от 10^{10} до 10^{12} Гц.

Радиоволны

Высокочастотные моды

Релаксация

ионного ионных "облака" пар

> Ориентация молекул в жидкостях

Кинетическая релаксация

Основные концепции

Пусть переменное напряжение $V^* = V_0 \exp(j\omega t)$ наложено на ЭХЯ, т.е. образец с электродами. Тогда через ячейку будет протекать электрический ток $I^* = I_0 \exp[j(\omega t + \varphi)]$, причем в общем случае ток может быть сдвинут по фазе на угол φ относительно напряжения. Полное комплексное сопротивление (импеданс) Z^* ячейки определяется в соответствии с обобщенным законом Ома следующим образом:

$$Z'' = V''/I'' = V_0 \exp(j\omega t)/I_0 \exp[j(\omega t + \varphi)] = (V_0/I_0) \exp(-j\varphi) =$$

$$= Z\cos\varphi - jZ\sin\varphi = Z' - jZ''. \tag{1}$$

Здесь Z', Z'' — активная и реактивная составляющие импеданса. Наряду с сопротивлением рассматривают и комплексную проводимость:

$$Y^* = 1/Z^* = Y' + jY''. (2)$$

Для одновременного обозначения импеданса и адмиттанса используют название "иммиттанс".

Функции и представления иммитанса

Кроме указанных выше представлений данных электрических измерений в виде импеданса и адмиттанса используют и другие представления: модуль отклика [9], $M^* = j\omega C_0 Z^*$ (где C_0 — емкость пустой разомкнутой ячейки); тангенс угла диэлектрических потерь, $tg\delta = -Z''/Z'$; диэлектрические проницаемость (ϵ^*) и восприимчивость (χ^*). Соотношения между различными представлениями даны в табл. 1 и 2.

Таблица 1. Связь между параметрами различных представлений

Пара- метр	Z'	Y*	M'/C_0	
Z =	Z'+jZ''	$\frac{1}{Y^*} = \frac{Y'}{ Y ^2} + j \frac{-Y''}{ Y ^2}$	$\frac{M^*}{j\omega C_0} = \frac{M''}{\omega C_0} - j\frac{-M'}{\omega C_0}$	
<i>y</i> =	$\frac{1}{Z^*} = \frac{Z'}{ Z ^2} + j \frac{-Z''}{ Z ^2}$	Y' + jY''	$\frac{j\omega C_0}{M^*} = \frac{\omega C_0 M^*}{ M ^2} + j \frac{\omega C_0 M'}{ M ^2}$	
$M'/C_0 =$	$j\omega Z'' = -\omega Z'' + j\omega Z'$	$\frac{j\omega}{Y''} = \frac{\omega Y''}{ Y ^2} + j\frac{\omega Y'}{ Y ^2}$	$M'/C_0 + jM''C_0$	
tgσ ≔	-Z"/Z'	Y'/Y"	M"/M"	

Функции иммитанса

Table 1.1.1. Relations Between the Four Basic Immittance Functions^a

	М	Z	Y	ε
\overline{M}	М	μZ	μY^{-1}	\mathcal{E}^{-1}
Z	$\mu^{-1}M$	Z	Y^{-1}	$\mu^{\scriptscriptstyle{-1}} arepsilon^{\scriptscriptstyle{-1}}$
Y	μM^{-1}	Z^{-1}	Y	με
${\cal E}$	M^{-1}	$\mu^{\scriptscriptstyle -1} Z^{\scriptscriptstyle -1}$	$\mu^{-1}Y$	ε

^a $\mu \equiv j\omega C_c$, where C_c is the capacitance of the empty cell.

$$Z = R_s(\omega) - jX_s(\omega)$$

$$Y = G_p(\omega) + jB_p(\omega), \quad B_p \equiv \omega C_p(\omega) \quad \text{admittance, } Y \equiv Z^{-1} \equiv Y' + jY''.$$

Простейшие цепи

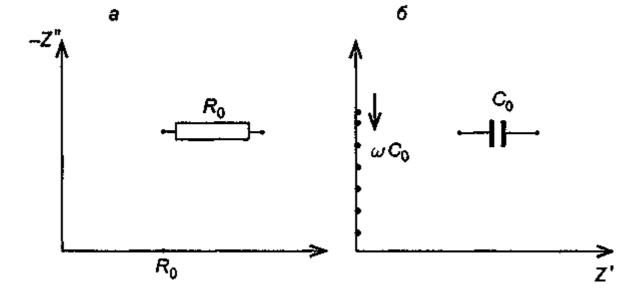


Рис. III.10.3 Годографы импеданса для чисто ективного (a) и емкостного (6) сопротивлений.

Нетрудно видеть, что для чисто активного сопротивления R имеем $Z'_R = R$, $Z''_R = 0$ и $Y_R' = 1/R$, $Y_R'' = 0$. В плоскости Z', Z'' сопротивление R представлено точкой на оси Z' при любой частоте ω (рис. III.10.3, α). При замене сопротивления R на емкость C получим, что $Z^* = 1/j\omega C$, поэтому $Z_{C'} = 0$, $Z_{C''} = -j/\omega C$; $Y_{C'} = 0$, $Y_{C''} = j\omega C$. Как видно, емкость имеет чисто реактивный импеданс (адмиттанс), и Z^* зависит от частоты. На комплексной плоскости Z', Z'' зависимость $Z'(\omega)$ для емкости изображается прямой, совпадающей с осью Z'' (рис. III.10.3, δ). Графическая зависимость $Z^*(\omega)$ в координатах Z', Z'' (координаты Найквиста (Nyquist plots)) называется годографом импеданса, или его спектром. Построение годогра-

Последовательное соединение

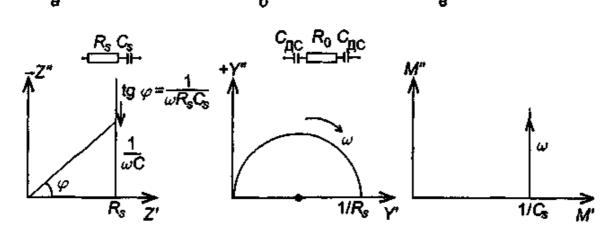
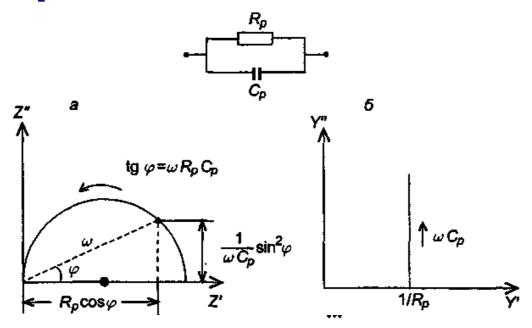


Рис. III.10.4. Годографы импеданса (а), адмиттанса (б) и модуля отклика (в) для цепи из последовательно соединенных сопротивления и емкости.

Схема I (рис. Π .10.4). Для последовательно соединенных сопротивления R_s и емкости C_s импеданс записывается в виде

$$Z_s^* = R_s - j \frac{1}{\omega C_s}, \ Z_s^{I} = R_s, \ Z_s^{II} = \frac{1}{\omega C_s}.$$
 (3a)

Ясно, что годограф импеданса представляет прямую линию (рис. III.10.4, *a*). Адмиттанс этой схемы рассчитывается следующим образом:


$$Y_s^{\bullet} = 1/Z_s^{\bullet} = 1/(R_s + 1/j\omega C_s) = \omega^2 R_s C_s^2 / [1 + \omega^2 R_s^2 C_s^2] + j\omega C_s / [1 + \omega^2 R_s^2 C_s^2].$$
 (36)

Из выражения (3б) следует, что обе составляющие адмиттанса Y_s и Y_s являются частотнозависимыми (ω входит в выражения как параметр). Для построения годографа Y_s воспользуемся тем, что Y_s Y_s $\approx 1/\omega R_s C_s$. Подставляя это соотношение в выражение для Y_s , получим

$$(Y_s')^2 + (Y_s'')^2 - Y_s'/R_s = 0.$$

Последнее выражение представляет уравнение окружности $(Y_s'-1/2R_s)^2 + (Y_s'')^2 = (1/2R_s)^2$ с центром, лежащим на оси абсцисс в точке $(1/2R_s, 0)$ и радиусом $1/2R_s$. Нижняя часть окружности не имеет фи-

Параллельное соединение

Схема II (рис. III.10.5). Для параллельно соединенных сопротивления R_p и емкости C_p адмиттанс записывается в виде

$$Y_p^{\bullet} = 1/R_p + j\omega C_p$$
, или $Y_p' = 1/R_p$, $Y_p'' = j\omega C_p$ (4a)

Для этого случая годограф адмиттанса представляет прямую линию (рис. III 10 5, 6) Импеданс этой схемы рассчитывается аналогично адмиттансу схемы I:

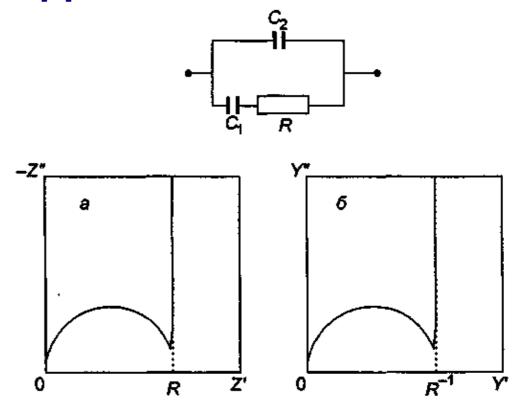
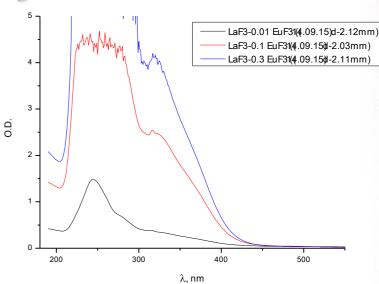
$$Z_{p}^{*} = 1/Y_{p}^{*} = R_{p}/(1 + j\omega R_{p}C_{p}) = R_{p}/[1 + \omega^{2}R_{p}^{2}C_{p}^{2}] - j\omega R_{p}^{2}C_{p}/[1 + \omega^{2}R_{p}^{2}C_{p}^{2}].$$
 (46)

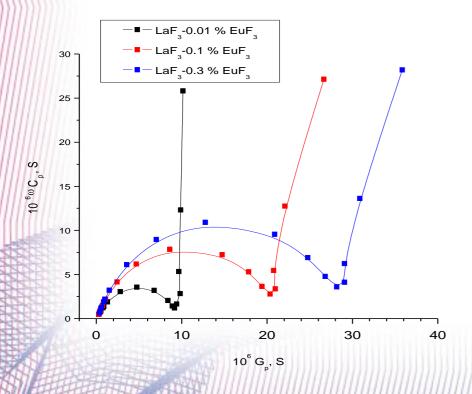
Нетрудно показать, что выражение $(Z_p' - R_p/2)^2 + (Z_p'')^2$ является величиной постоянной, равной $(R_p/2)^2$, т.е

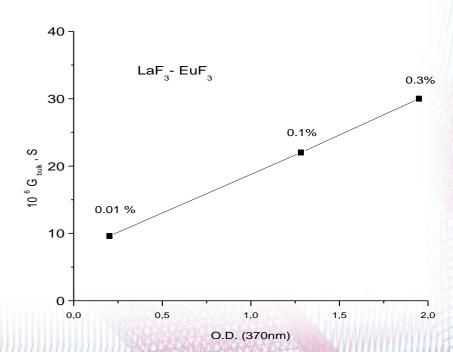
$$(Z_p' - R_p/2)^2 + (Z_p'')^2 = (R_p/2)^2. (4B)$$

Уравнение (4в) представляет уравнение окружности с центром в точке с координатами $(R_p/2,0)$ и радиусом $R_p/2$.

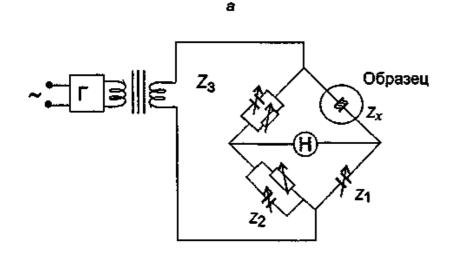
Еще одна схема


Рис. III.10.7. ЭЭС и годографы ее импеданса (а) и адмиттанса (б).


Схема IV (рис. III.10.7). Аналитическое выражение для импеданса рассматриваемой цепи имеет достаточно громоздкий вид и трудно поддается анализу, однако качественно поведение годографа импеданса можно описать, не прибегая к вычислениям [10]. Действительно, для высоких частот можно пренебречь влиянием емкости C_1 (ее комплексное сопротивление мало по сравнению с R), и получаем стандартную схему II. Потому высокочастотная часть годографа — это полуокружность радиуса R/2, проходящая через начало координат. В низкочастотном пределе ($\omega \to 0$) наоборот, можно пренебречь влиянием емкости C_2 (очень большой импеданс $1/\omega C_2$), и получаем схему I. В этом случае спектр импеданса выглядит как вертикальная прямая, проходящая через точку (R, 0). Полный годограф импеданса показан на рис. III.10.7, a. Аналогичные рассуждения приводят к годографу адмиттанса, приведенному на рис. III.10.7, δ .

Пример - LaF₃-Eu²⁺


	D(X3)	G(Y3)	H(Y3)	I(X4)	J(Y4)	K(Y4)
		LaF3-0.1 Eu(14.09.15)				
		tg(D)	Cp, F	Gp, S	Cp, F	2Pi*f*Cp
4	100	0,6217	2,3573E-9	6,4222E-7	2,0822E-9	1,30762E-6
5	120	0,6234	2,1917E-9	7,3057E-7	1,9897E-9	1,49944E-6
6	200	0,629	1,8208E-9	1,0851E-6	1,7429E-9	2,18908E-6
7	500	0,6857	1,2957E-9	2,4254E-6	1,3206E-9	4,14668E-6
8	1000	0,8346	9,439E-10	4,6741E-6	9,8479E-10	6,18448E-6
9	2000	1,1555	5,944E-10	8,6048E-6	6,251E-10	7,85126E-6
10	5000	2,0749	2,214E-10	1,4741E-5	2,309E-10	7,25026E-6
11	10000	3,3944	8,168E-11	1,7837E-5	8,448E-11	5,30534E-6
12	20000	5,3372	2,825E-11	1,9398E-5	2,899E-11	3,64114E-6
13	50000	7,2244	8,75E-12	2,0349E-5	8,87E-12	2,78518E-6
14	100000	6,1058	5,346E-12	2,097E-5	5,376E-12	3,37613E-6
15	200000	3,7406	4,32E-12	2,077E-5	4,34E-12	5,45104E-6
16	500000	1,696	4,06E-12	2,21E-5	4,06E-12	1,27484E-5
17	1000000	0,9644	4,32E-12	2,666E-5	4,32E-12	2,71296E-5

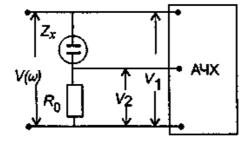
Приборы для измерения иммитанса

Для моста Шеринга (рис. III.10.16, a) условие равновесия будет

$$Z_1Z_3=Z_2Z_x,$$

откуда можно найти значения Z_x .

ходе регистрируется сигнал V_1/V_2 , который имеет две составляющие: $V_1/V_2 = a + jb$. Тогда в случае использования схемы III.10.16, δ получаем


$$Y_x = \frac{a-1}{R_0} + j \frac{b}{R_0},$$

а для схемы III.10.16, в

$$Z_x = R_0(a-1) + jR_0b.$$

 R_0 $V(\omega)$ V_2 V_2 V_2 V_3 V_4 V_2 V_4 V_2 V_3 V_4 V_4 V_5 V_5 V_5 V_6 V_7 V_8 V_8 V_8 V_8 V_8 V_8 V_8 V_8 V_9 V_9

б

Поправки на паразитный импеданс измерительной ячейки могут достигать десятков процентов при измерениях малых сопротивлений и малых емкостей при частотах выше 100 кГи.

Рис III 10 16 Мост переменного тока типа Шерринга (a) и измерения импеданса ЭХЯ (Z_x) с помощью анализатора частотных характеристик (AЧХ) (6, в) Г— генератор, Н— нуль-индикатор, Z_x — импеданс образца, Z_1 , Z_2 и Z_3 — импедансы плеч моста, R_0 — сопротивление измерения

Измеритель Е7-20

1.2.1 Прибор измеряет следующие параметры:

- индуктивность - L_p , L_s ;

- емкость

- активное сопротивление

- реактивное сопротивление

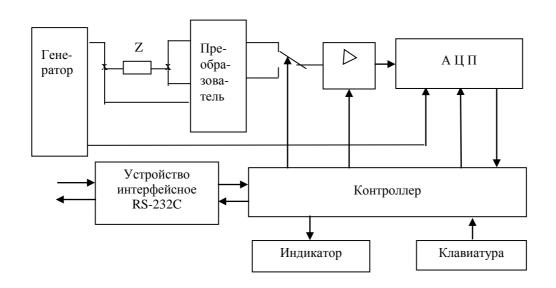
- проводимость

- тангенс угла потерь - tg δ; (обознач. D)

- добротность

- модуль комплексного сопротивления - | Z | ;

- угол фазового сдвига комплексного сопротивления - ф;

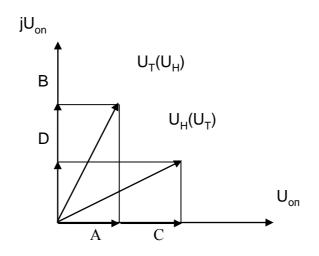

- ток утечки - І.

Примечания

1 L_p , C_p , R_p , G_p (L_s , C_s , R_s , X_s) – измеряемые параметры при параллельной (последовательной) схеме замещения.

Параметр	Диапазон измерений		
$R_s, R_p, X_s, Z $	От 0,01 мОм до 1 ГОм		
L_s, L_p	От 0,01 нГн до 10 кГн		
C_s, C_p	От 0,001 пФ до 1 Ф		
G_{p}	От 0,01 нСм до 10 См		
D, Q	От 10-4 до 104		
φ	От минус 90° до плюс 90°		
To the state of th	От 0.01 мкА до 10 мА		

Схема прибора Е7-20



В основу работы прибора положен метод вольтметра-амперметра. Структурная схема прибора приведена на рисунке 1.5.

Напряжение рабочей частоты от генератора подается на измеряемый объект. Преобразователь формирует два напряжения, одно из которых (U_T) пропорционально току, протекающему через измеряемый объект, другое (U_H) – напряжению на нем. Отношение этих напряжений равно комплексной проводимости (Y) или комплексному сопротивлению (Z) объекта.

Измерение отношения напряжений проводится аппаратно-программным логометром.

Работа Е7-20

Проекции векторов U_T , U_H на опорное напряжение U_{on} и jU_{on} выделяются синхронным детектором (СД) и измеряются в некотором произвольном масштабе измерителем интегрирующего типа.

Очевидны соотношения:

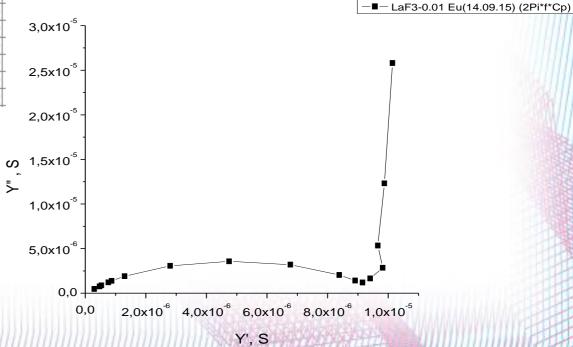
$$Y = G + jB' = \frac{U_T}{U_H} = \frac{U_X}{U_O} = \frac{A + jB}{C + jD},$$
(1.5)

где G – активная проводимость;

В' – реактивная проводимость;

 U_X – числитель измеряемого отношения;

U_O – знаменатель измеряемого отношения;


Пример измерения

Data2					
	A[X1]	B(Y1)	C[Y1]	E(X2)	F[Y2]
		·0.01 Eu(14.0	·0.01 Eu(14.0	·0.01 Eu(14.0	·0.01 Eu(14.6
		tg(D)	Cp, É	Gp, Ś	Cp, F
1	25	0,6628	3,0961E-9	2,9912E-7	3,047E-9
2	50	0,6389	2,4836E-9	4,7129E-7	2,4406E-9
3	60	0,639	2,333E-9	5,3213E-7	2,3039E-9
4	100	0,6474	1,9581E-9	7,6322E-7	1,9413E-9
5	120	0,6572	1,8365E-9	8,7299E-7	1,8237E-9
6	200	0,7034	1,5182E-9	1,2991E-6	1,5123E-9
7	500	0,9352	9,704E-10	2,8047E-6	9,74E-10
8	1000	1,3512	5,6343E-10	4,7464E-6	5,682E-10
9	2000	2,1473	2,5129E-10	6,77E-6	2,5429E-10
10	5000	4,1429	6,43E-11	8,3857E-6	6,513E-11
11	10000	6,3137	2,2392E-11	8,907E-6	2,2641E-11
12	20000	7,6342	9,51E-12	9,154E-6	9,58E-12
13	50000	5,6875	5,24E-12	9,404E-6	5,25E-12
14	100000	3,4494	4,515E-12	9,8207E-6	4,522E-12
15	200000	1,8138	4,22E-12	9,656E-6	4,25E-12
16	500000	0,7987	3,92E-12	9,872E-6	3,92E-12
17	1000000	0,3901	4,11E-12	1,014E-5	4,11E-12
1111111	111111				

Реактивная Y" = $\omega C_p = 2\pi f C_p$ Активная Y'= G_p

$$Z' = R_p = 1/G_p$$

 $Z'' = 1/Y'' = 1/2\pi fC_p$

$$tg\delta = Z''/Z' = Gp/2\pi fCp$$

Практическая работа на Е7-20

- 1.На измерителе иммитанса Е7-20 измерить пары величин tgD , Cp и Gp, Cp в диапазоне частот 25 гц 1Мгц для образцов ${\rm LaF_3}$ с разной концентрацией ${\rm SmF_3}$
- 2. Построить спектры импеданса (зависимости Y" от Y' и Z" от Z') для всех образцов
- 3. Рассчитать $tg\delta$ из величин Gp f и Cp ($tg\delta$ =Gp/2 π fCp) и убедиться что пары измеряемых величин $tg\delta$, Cp и Gp, Cp взаимосвязаны